Fabrication of Micropatterned Dipeptide Hydrogels by Acoustic Trapping of Stimulus-Responsive Coacervate Droplets

Nichols, M. K., Kumar, R. K., Bassindale, P. G., Tian, L., Barnes, A. C., Drinkwater, B. W., Patil, A.J. and Mann, S. (2018). Fabrication of Micropatterned Dipeptide Hydrogels by Acoustic Trapping of Stimulus-Responsive Coacervate Droplets. Small, 14(26), 1800739.

http://doi.org/10.1002/smll.201800739

Abstract

Acoustic standing waves offer an excellent opportunity to trap and spatially manipulate colloidal objects. This noncontact technique is used for the in-situ formation and patterning in aqueous solution of 1D or 2D arrays of pH-responsive coacervate microdroplets comprising poly(diallyldimethylammonium) chloride and the dipeptide N-fluorenyl9-methoxy-carbonyl-D-alanine-D-alanine. Decreasing the pH of the preformed droplet arrays results in dipeptide nanofilament self-assembly and subsequent formation of a micropatterned supramolecular hydrogel that can be removed as a self supporting monolith. Guest molecules such as molecular dyes, proteins, and oligonucleotides are sequestered specifically within the coacervate droplets during acoustic processing to produce micropatterned hydrogels containing spatially organized functional components. Using this strategy, the site-specific isolation of multiple enzymes to drive a catalytic cascade within the micropatterned hydrogel films is exploited.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s